36 resultados para biological activated carbon

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrient discharge into coastal areas, such as the Great Barrier Reef can result in the degradation of coastal ecosystems. For example, excess nitrogen and phosphorus can damage corals through inducing algal bloom and subsequent shading. Excessive phosphorus can further weaken coral skeletons making them susceptible to damage. Land based industries such as aquaculture can contribute to such problems. This study set out to develop a system whereby water from aquaculture can be constantly reused resulting in minimized waste discharge. A three-stage filtration system utilizing floating media and activated carbon was designed to harness bacterial processes that could reduce both particulate and dissolved compounds to the extent whereby approximately 100% reuse of the wastewater became possible. This involved efficient and effective particulate and biological removal mechanisms in both aerobic and anaerobic zones of the filtration system. This design reduced dissolved nitrogen levels by up to 70% and maintained low phosphorus levels, which allowed the reuse of water for the successful culture of barramundi with a survival rate of 97% over 25 days. This pilot scale study demonstrated the potential of reusing aquaculture wastewater from the viewpoint of reducing nutrient input into coastal environments. Future research will refine these processes and assess the performance of the system at several commercial scale applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recirculating aquaculture systems (RAS) are essential for the reduction in fresh water usage as well as the discharge of nutrients along with aquaculture effluents. A RAS consisting of an anoxic reactor, a membrane bioreactor (MBR) and a UV-disinfection unit was used to process 10,000 L/d of aquaculture effluent providing high-quality treated water for recirculation to a Barramundi fish culture. The system maintained low levels of nitrate (<20 mg/L), nitrite (<3 mg/L) and ammonia (<0.6 mg/L) in the fish tank. Permeate from the membrane that was recirculated to the fish tank contained <21 mg/L of nitrate, <2 mg/L of nitrite and 0 mg/L of ammonia. However, the rate of fouling of the membrane in the MBR was around 1.47 kPa/d, and the membrane in the MBR required cleaning due to fouling after 16 days. Cleaning of the membrane was initiated when the TMP reached around 25 to 30 kPa. In order to reduce the rate of fouling, 500 mg of powdered activated carbon (PAC) per litre of MBR volume was introduced, which decreased the rate of fouling to 0.90 kPa/d. Cleaning of membrane was needed only after 31 days of operation while maintaining the treated effluent quality. Thus the frequency of cleaning could be halved due to the introduction of PAC into the MBR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wastewater treatment has always been a major concern in the developed countries. Over the last few decades, activated carbon adsorption has gained importance as an alternative tertiary wastewater treatment and purification process. In this study, granular activated carbon (GAC) adsorption was evaluated in terms of total organic carbon (TOC) removal from low strength synthetic wastewater. This paper provides details on adsorption experiments conducted on synthetic wastewater to develop suitable adsorption isotherms. Although the inorganics used in the synthetic wastewater solution had an overall unfavourable effect on adsorption of organics, the GAC adsorption system was found to be effective in removing TOC from the wastewater. This study showed that equation of state (EOS) theory was able to fit the adsorption isotherm results more precisely than the most commonly used Freundlich isotherm. Biodegradation of the organics with time was the most crucial and important aspect of the system and it was taken into account in determining the isotherm parameters. Initial organic concentration of the wastewater was the determining factor of the model parameters, and hence the isotherm parameters were determined covering a wide range of initial organic concentrations of the wastewater. As such, the isotherm parameters derived using the EOS theory could predict the batch adsorption and fixed bed adsorption results of the multi-component system successfully. The isotherm parameters showed a significant effect on the determination of the mass transfer coefficients in batch and fixed bed systems.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbon (AC) prepared from luffa sponge was firstly used as an adsorbent to remove Cr(VI) from aqueous solution. The Cr(VI) adsorption behaviors of AC under different conditions, including initial Cr(VI) concentration, quantity of AC, solution pH, and temperature were investigated. The optimal conditions for adsorption of Cr(VI) by AC were pH = 1, initial Cr(VI) concentration = 80 mg/L, T = 303 K, and AC content = 1.6 g/L. The adsorption kinetics could be described by the pseudo-second-order model. Fourier transform infrared spectroscopy was used to investigate the sorption mechanism. Some functional groups such as C–O and O–H were formed on the carbon surface, which could then react with Cr(VI). The surface structure of AC before and after adsorption was analyzed by scanning electronic microscopy. Adsorbed ions choked some of the pores in AC after adsorption. The Brunauer–Emmett–Teller surface area and average pore size of the AC were 834.13 m2/g and 5.17 nm, respectively. The maximum adsorption of Cr(VI) by AC was 149.06 mg/g, which makes AC prepared from luffa sponge promising for removing Cr(VI) from wastewater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbon (AC) developed from loofah sponge with phosphoric acid activation was applied to absorb cefalexin (CEX) in aqueous solution. AC was characterized by N2 adsorption–desorption isotherms and Fourier transform infrared spectroscopy (FTIR). Factors influencing the adsorption process were investigated. The equilibrium adsorption isotherms and kinetics of CEX were also studied. The results showed that AC prepared from loofah sponge had rough surface and abundant pores. The determination results of specific surface area (810.12 m2/g) and average pore size (5.28 nm) suggested the high adsorption capability. At low concentration, the AC could adsorb about 95% of CEX. The adsorption effect was independent of the temperature and pH. The maximum adsorption amount of CEX was about 55.11 mg/g at 308 K. The equilibrium data agreed well with Freundlich isotherm equation (R2 = 0.9957) at 308 K, which indicated multilayer adsorption. FTIR analysis suggested the existence of phosphorus-containing functional groups, C–O bond, and C=C bond on the surface of AC of which the peak intensity of AC after adsorption was slightly lower after adsorption, indicating that the AC surface groups interacted with or were covered by the CEX species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coffee shell is an environmental concern to china along with steady growth of coffee production. This study attempt to characterize high specific surface area activated carbon (HSSA-AC). HSSA-AC was prepared from carbonized material which obtained from coffee shell by microwave irradiation. Textural properties and surface chemistry of HSSA-AC were found to be strongly depending on the activation time, KOH/C ratio and particle size. The textural properties of the samples were investigated by means of scanning electron microscope analyzer (SEM), cryogenic N2 adsorption, whereas, surface chemistry was probed through Fourier Transform Infrared (FTIR) spectrometer (Maldhure and Ekhe, 2011) and Hydrogen storage performance was tested by H2 adsorption. Maximum surface area of 3149 m2 g−1, Iodine adsorption value 2566 mg/g, Methylene Blue adsorption value 47.5 mL 0.1 g−1, the hydrogen adsorption value 0.91 wt% at 14 MPa and yield 39% was observed in case of microwave treated sample at activation time 9 min, KOH/C ratio 5 and particle size 0.25–0.71 mm. Results revealed usefulness of microwave treatment in influencing surface area of HSSA-AC which could be used in a hydrogen storage material research application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, six types of typical bio-wastes are used to prepare activated carbons (ACs) by high-temperature carbonization and activation with KOH. A novel electrochemical sensor for rutin was developed based on a peanut shell-derived activated carbon and gold nanoparticle composite modified glassy carbon electrode (P-AC/AuNPs/GCE). The as-synthesized ACs and composites were characterized by a variety of physicochemical techniques. The proposed sensor exhibits ideal electrochemical behavior for rutin with a wide linear range, low detection limit, and good selectivity. The desirable electrochemical performance enables the biomass-derived ACs and their composites to act as new sources of carbonaceous materials for electrochemical sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many Asian countries, rapid industrialization and urbanization has led to an increased number of cars, making wastewater from gas stations an important issue of concern in urban environment. This wastewater is characterized by high concentration of oil-water emulsion, which cannot be effectively removed by a conventional gravity separator. An experimental investigation on the treatability of oily wastewater from gas stations using a membrane bioreactor (MBR) system revealed that MBR system could achieve good removal efficiency with stability against shock loading. Optimum operating conditions were found to be at a hydraulic retention time of 4 h and an oil-loading rate of 1.8 kg oil m^sup -3^.d^sup -1^. It was anticipated that adding powdered activated carbon (PAC) in the MBR could help to adsorb the oils. However, operating the MBR with only microbial flocs has an advantage over adding PAC particles into the MBR, since the former condition could provide a prolonged cycle of filtration with a relatively lesser increase in transmembrane pressure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The discharge of nutrient rich effluent from aquaculture systems into coastal waters is cause for concern. Direct filtration of aquaculture wastewater, using floating medium and sand with in line flocculation, and biological filtration using activated carbon, has the potential to improve water quality for recycling within aquaculture systems. This study looked at the performance of laboratory scale dual media and activated carbon filters in suspended solids and nutrient removal in the treatment of aquaculture wastewater. The dual media filter, with flocculant FeCl3 of 9mg/L, functioned best at a velocity of 7mJh with low headloss, and good turbidity and phosphorus removal (80% and 53% respectively). The activated carbon filter removed ammonia (84%) and nitrite (71 %) in the process of nitrification with a five-hour hydraulic retention time. This paper reports preliminary results from a longer term sustainable aquaculture project.